DHL: Logistics companies could become the “search engines of the real world”

|
Added in: News

dhl

DHL  presented its “Big Data in Logistics” trend report today. Published by the innovation team  at DHL Customer Solutions & Innovation, the report focuses on three areas of application  for data analysis by logistics companies and other industries: operational efficiency,   customer experience and new business models. The report includes concrete examples   that could be applied in practice in each of these three areas.

“Big data” is the name given to the huge amounts of information that can be systematically   collected from various sources and then analyzed and evaluated with the help of new   technologies. The rapid increase in the quantity of available data is primarily the result of   automatic generation. Examples include the recording of delivery data or prescriptions   in the healthcare sector. Companies and other organizations hope that the evaluation   of such data will allow them to recognize relevant trends at an early stage, giving them   concrete competitive advantages.  “Big data and logistics fit together perfectly. Logistics companies manage a huge flow   of goods and thereby create massive volumes of data. Specific data about millions of   deliveries, including destination, size, weight and information about contents, is recorded   every day.

That data offers huge potential for new business models, among other   things. That allows logistics companies to become search engines for users from every   conceivable field,” explained Martin Wegner, Vice President Research & Development,   DHL Customer Solutions & Innovation.  Street address  Charles-de-Gaulle-Str.   53113 Bonn, Germany  The aim of the trend report is to identify significant trends using scientific methods as a   starting point for innovative, logistics-specific big data concepts in three areas: First, the   aim in the field of operational efficiency is the real time optimization of package delivery   routes taking into account the order of delivery, the traffic situation and the availability   of the recipient. Second, the ability to predict delays in the supply chain, followed by the   appropriate logistical service response, allows for an improved customer experience.

Finally, big data offers logistics providers ideas for new business models, for example   the analysis of correlations between weather conditions, outbreaks of flu and the online   purchases of consumers. Such analysis reveals that bad weather leads to increases in the   volume of purchases made online. That, in turn, directly affects the volume of packages   sent. In such cases, big data models can help companies optimize processes to offer

,